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1 Introduction

This grant covered the completion of the PhD thesis of Paul Viola and the initiation of the PhD
work of Oded Maron. This report summarizes the key results in both of these pieces of work.

Viola's work was on alignment of 2- and 3-dimensional objects based on maximization of
mutual information. The technique depends only on object shape and is robust to variations of
illumination. The algorithms are quite general and can foreseeably be used in a wide variety of
imaging situations. Paul Viola’s Ph.D. thesis is available as an MIT AI Laboratory Technical
report and is reachable from his Web page (http://www.ai.mit.edu/people/viola). The summary
here is from a paper that appeared in ICCV 95.

Maron’s work has focused on a variation on supervised learning called multiple-instance
learning, where the task is to learn a concept given positive and negative bags of instances.
Each bag may contain many instances, but a bag is labeled positive even if only one of the
instances in it falls within the concept. A bag is labeled negative only if all the instances in it
are negative. This framework has been applied to a variety of problem domains. Oded Maron
plans to finish his doctoral work by May 1997. The work summarized here is from a paper to
appear in NIPS 97.

2 Alignment and Maximization of Mutual Information — Paul
Viola and William Wells

In many different visual processing problems, including object recognition, there is a need to find
and evaluate the alignment of model and image data. It has been difficult to find a suitable metric
for this comparison. In other applications, such as medical imaging, data from one type of sensor
must be aligned with that from another. We will present an information theoretic approach that
can be used to solve such problems. Qur approach makes few assumptions about the nature of
the imaging process. As a result the algorithms are quite general and may foreseeably be used
with a wide variety of sensors. We will show that this technique makes many of the difficult
problems of model comparison easier, including accommodation of the vagaries of illumination
and reflectance.

The general problem of alignment entails comparing a predicted image of an object with an
actual image. Given an object model and a pose (coordinate transformation), a model for the
imaging process could be used to predict the image that will result. This is typically a difficult
problem. If we had a good imaging model then deciding whether an image contained a particular
model at a given pose is straightforward: compute the predicted image and compare it to the
actual image directly. Given a perfect imaging model the two images will be identical, or close
to it. Of course finding the correct alignment is still a remaining challenge.

The relationship between an object model (no matter how accurate) and the object’s image
is a complex one. The appearance of a small patch of a surface is a function of the surface
properties, the patch’s orientation, the position of the lights and the position of the observer. In




the part of the scene containing an image of the object, we can formulate an imaging equation
v(T(z)) = F(u(z), P) , (1)

where z are coordinates of a surface patch of the object model, u(z) describes the properties of
the surface of the model (e.g., surface normal, albedo, etc.) at position z , and P are parameters
of the imaging process, such as the illumination conditions. F' is the image formation function
that generates the brightness of the surface patch in the image. Thus, v(T(z)) is the brightness
image of the object placed in the scene by coordinate transformation T'(-). If F and P were
known in detail it would be feasible to make an accurate prediction of scene intensities, since
the physics of image formation are well understood. But, because of the complexity of visible
light imaging, it may be difficult to determine the particular F' and P for a given scene.

One reason that it is, in principle, possible to find F is that the model does supply much
information about the scene. Clearly if there were no mutual information between u and v,
there could be no meaningful F. We propose to finesse the problem of finding and computing
F by dealing with this mutual information directly. Such a technique would attempt to find
the alignment of the model in the scene by maximizing the information that the model provides
about the scene. We will present an algorithm that does just this. It requires no a priori model
of the relationship between surface properties and scene intensities - it only assumes that the
model tells more about the scene when it is correctly aligned.

3 Description of Method

3.1 Alignment by Maximization of Mutual Information

We seek an estimate of the transformation T that aligns the model u and image v by maximizing

their mutual information over the transformations T,
T = argmax I(u(2), o(T(2))) - (2)

Here we treat z as a random variable over coordinate locations in the model. In the alignment
algorithm described below, we will draw samples from z in order to approximate I and its

derivatives.
Mutual information is defined in terms of entropy in the following way [1] :

I(u(z), v(T(2))) =
H(u(z)) + H(o(T(2))) - H(w(z),v(T(2))) 3)

H(-) is the entropy of a random variable, and is defined as H(z) = - [p(z)Inp(z)dz ,
while the joint entropy of two random variables z and y is H(z,y) = — [p(z,y) Inp(z,y)dzdy .
Entropy can be interpreted as a measure of uncertainty, variability, or complexity.

The mutual information defined in Equation 3 has three components. The first term on the
right is the entropy in the model, and is not a function of T'. The second term is the entropy of
the part of the image into which the model projects. It encourages transformations that project
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u into complex parts of v. The third term, the (negative) joint entropy of v and v, contributes
when u and v are functionally related. It encourages transformations where u explains v well.
Together the last two terms identify transformations that find complexity and explain it well.
This is the essence of mutual information.

3.2 Estimating Entropies and their Derivatives

The entropies described above are defined in terms of integrals over the probability densities
associated with the random variables » and v. When analyzing signals or images we will not
have direct access to the densities. In this section we describe a differentiable estimate of the
entropy of a random variable that is calculated from samples.

The entropy of a random variable z may be expressed as an expectation of the negative
logarithm of the probability density: H(z) = E.(—In p(z)).

Our first step in estimating the entropies from samples is to approximate the underlying prob-
ability density p(z) by a superposition of Gaussian densities centered on the elements of a sample
A drawn from z: p(2) ® §=2.,ea Gu(z = 2j), where Gy(z) = (2r) 7|y 7 exp(—3zTy~1z).
This method of density estimation is widely known as the Parzen Window method. It is de-
scribed in the textbook by Duda and Hart[2].

Next we approximate statistical expectation with the sample average over another sample

B drawn from z: E,(f(z2))~ NIE > zeB f(zi)-
We may now write an approximation for the entropy of a random variable z as follows,

Z ln . Z Gylzi - 7). (4)

z,EB zJ €A

In order to find maxima of mutual information, we calculate the derivative of entropy with
respect to the transformation 7. After some manipulation, this may be written compactly as
follows,

iH(z(T)) ~ B

No Z Z W.(zi, 23)(zi — 7 T‘l’_l ( - zj)

z.GB ;€A

, using the following definition:

Gy(zi — 2;) .
Yeea Gulzi — zk)

The weighting factor W,(z;, z;) takes on values between zero and one. It will approach one
if 2; is.significantly closer to z; than it is to any other element of A. It will be near zero if some
other element of A is significantly closer to z;. Distance is interpreted with respect to the squared
Mahalanobis distance (see [2]) Dy(z) = 2Ty~ 2. Thus, W,(zi, 2;) is an indicator of the degree of
match between its arguments, in a “soft” sense. It is equivalent to using the “softmax” function

Wz(z,', z]') =




of neural networks [3] on the negative of the Mahalanobis distance to indicate correspondence
between z; and elements of A.

The summand in Equation 5 may also be written as: W,(z;,z;) %%Dw(z; — zj). In this
form it is apparent that to reduce entropy, the transformation T should be adjusted such that
there is a reduction in the average squared distance between those values which W indicates are
nearby, i.e., clusters should be tightened.

3.3 Stochastic Maximization of Mutual Information

The entropy approximation described in Equation 4 may now be used to evaluate the mutual
information of the model and image (Equation 3). In order to seek a maximum of the mutual
information, we will calculate an approximation to its derivative,

LHT) = LRI (E) - gpH (@), oT(2)

Using Equation 5, and assuming that the covariance matrices of the component densities used
in the approximation scheme for the joint density are block diagonal: ¥, = DIAG(¥L), %5,
we can obtain an estimate for the derivative of the mutual information as follows:

== = o Z E(”t’UJ)
dT NB zi€Bz,€EA
_ 4. d
[Wv(vh vj)"/’u - Wuv(wiij)"‘puvl]ﬁ(vi - UJ') .

The weighting factors are defined as

Gy, (vi = ;)
reea Gy, (Vi — k)

Wv(via ’U]) = N and

Gy,, (Wi — w;)
Wuv wi, W) = = 3
(i) = 5 G (i - wh)

using the following notation (and similarly for indices j and k),

u; = u(z;), vi = v(T(z;)), and w; = (g, 9] T

If we are to increase the mutual information, then the first term in the brackets may be inter-
preted as acting to increase the squared distance between pairs of samples that are nearby in
image intensity, while the second term acts to decrease the squared distance between pairs of
samples that are nearby in both image intensity and the model properties. It is important to
emphasize that distances are in the space of values (intensities, brightness, or surface properties),
rather than coordinate locations.

The term j‘T( v; — v;) will generally involve gradients of the image intensities, and the deriva-
tive of transformed coordinates with respect to the transformation. In the simple case that T'is
a linear operator, the following outer product expression holds: ;‘%U(T(m,—)) = Vo(T(z;))z7.




Figure 1: MRI Alignment: Original Proton-Density Irﬁage, Original T2-Weighted Image, Initial
Alignment, Composite Display of Final Alignment, Intensity-Transformed Image

3.3.1 Stochastic Maximization Algorithm

We seek a local maximum of mutual information by using a stochastic analog of gradient descent.
Steps are repeatedly taken that are proportional to the approximation of the derivative of the -
mutual information with respect to the transformation:

Repeat:

A « {sample of size N4 drawn from z}

B « {sample of size Ng drawn from z}

daI

The parameter ) is called the learning rate. The above procedure is repeated a fixed number
of times or until convergence is detected.

A good estimate of the derivative of the mutual information could be obtained by exhaus-
tively sampling the data. This approach has serious drawbacks because the algorithm’s eost is
quadratic in the sample size. For smaller sample sizes, less effort is expended, but additional
noise is introduced into the derivative estimates.

Stochastic approximation is a scheme that uses noisy derivative estimate instead of the
true derivative for optimizing a function (see [4], [5], and [6]). Convergence can be proven for
particular linear systems, provided that the derivative estimates are unbiased, and the learning
rate is annealed (decreased over time). In practice, we have found that successful alignment may
be obtained using relatively small sample sizes, for example N4 = Np = 50. We have proven
that the technique will always converge to a pose estimate that is close to locally optimal (7].




It has been observed that the noise introduced by the sampling can effectively penetrate small
local minima. Such local minima are often characteristic of continuous alignment schemes, and
we have found that local minima can be overcome in this manner in these applications as well.
We believe that stochastic estimates for the gradient usefully combine efficiency with effective

escape from local minima.

3.4 Estimating the Covariance

In addition to A, the covariance matrices of the component densities in the approximation method
of Section 3.2 are important parameters of the method. These parameters may be chosen so
that they are optimal in the maximum likelihood sense with respect to samples drawn from the
random variables. This approach is equivalent to minimizing the cross entropy of the estimated
distribution with the true distribution [8]. For simplicity, we assume that the covariance matrices
are diagonal.

The most likely covariance parameters can be estimated on-line using a scheme that is almost
identical in form to the scheme for maximizing mutual information.

4 Experiments

In this section we demonstrate alignment by maximization of mutual information in a variety of
domains. In all of the following experiments, bi-linear interpolation was used when needed for

non-integral indexing into images.

4.1 MRI Alignment

Our first and simplest experiment involves finding the correct alignment of two MR images (see
Figure 1). The two original images are components of a double-echo MR scan and were obtained
simultaneously, as a result the correct alignment should be close to the identity transformation.
It is clear that the two images have high mutual information, while they are not identical. The
pixel values in the two images are pre-scaled so that they vary from 0 to 1.

A typical initial alignment appears in the center of Figure 1. Notice that this image is a
scaled, sheared, rotated and translated version of the original. A successful alignment is displayed
as a checkerboard. Here every other 20x20 pixel block is taken either from the model image or
target image. Notice that the boundary of the brain in the images is very closely aligned.

We represent the transformation by a 6 element affine matrix that takes two dxmens1ona.l
points from the image plane of the first image into the image plane of the second image. This
scheme can represent any combination of scaling, shearing, rotation and translation. The sample
metric used is squared distance, the component densities have o = 0.1, and the random samples
are of size 20. We used a learning rate of 0.02 for 500 iterations and 0.005 for 500 iterations.
Total run time on a Sparc 10 was 12 seconds.

Over a set of 50 randomly generated initial poses that vary in position by 32 pixels, a little
less than one third of the width of the head, rotations of 28 degrees, and scalings of up to 20%
the “correct” alignment is obtained feliably. Final alignments were well within one pixel in
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AT Ab INITIAL FINAL SUCCESS
XYZ ox oy 0z |Taalox oy oz |50
+mm ° mm ° mm ° %
10 10 5.94 5.56 6.11 5.11 .61 53 5.49 3.22 100
30 10 16.53 18.00 16.82 5.88 1.80 .81 14.56 2.77 96
20 20 10.12  12.04 10.77 11.56 1.11 41 9.18 3.31 96
10< A <20 [20< A< 40 14.83 15.46 14.466 | 28.70 1.87 222 14.19 3.05 78

Table 1: Skull Alignments Results Table

position and within 0.5% of the identity matrix for rotation/scale. We report errors in percent
here because of the use of affine transformation matrices.

The two MRI images are fairly similar.. Good alignment could probably be obtained with
a normalized correlation metric. Normalized correlation assumes, at least locally, that one
signal is a scaled and offset version of the other. Our technique makes no such assumption.
In fact, it will work across a wide variety of non-linear transformations. All that is required is
that the intensity transformation preserve a significant amount of information. On the right in
Figure 1 we show the model image after a non-monotonic (quadratic) intensity transformation.
Alignment performance is not significantly affected by this transformation.

This last experiment is an example that would defeat traditional correlation, since the signals
(the second and last in Figure 1) are more similar in value when they are badly mis-aligned (non-
overlapping) than they are when properly aligned.

4.2 Alignment of 3D Objects
4.2.1 Skull Alignment Experiments

This section describes the alignment of a real three dimensional object to its video image.
The signals that are compared are quite different in nature: one is the video brightness, while
the other consists of two components of the normal vector at a point on the surface of the model.

We obtained an accurate 3D model, including normals, of a skull that was derived from
a computed tomography (CT) scan. Cluttered video images of the skull were obtained (see
Figure 2). On the left we see the 3D points from the model at an initial pose projected into
the image plane and highlighted in white. A typical final alignment of the skull model into the
image appears next. Notice that the boundaries of the skull model and skull image are in"close
agreement.

One difference between the method used to perform 3D alignment and that used for 2D
alignment was a Z-buffering step that was used to prune hidden points from the calculations.
Since Z-buffer pruning is costly, and the pose does not change much between iterations, it proved
sufficient to prune every 200 iterations. Another difference is that the model surface sampling
was adjusted so that the sampling density in the image was corrected for foreshortening.

In this experiment, the camera has a viewing angle of 18 degrees. We represent T', the trans-
formation from model to image coordinates, as a double quaternion followed by a perspective



Figure 2: Skull Alignment Experiments: Initial Alignment, Final Alignment, Initial Alignment
with Occlusion, Final Alignment with Occlusion




projection [9]. We used a vector difference metric for the normals. Assuming diagonal covariance
matrices four different variances are necessary, three for the joint entropy estimate and one for
the image entropy estimate. The variance for the x component of the normal was 0.3, for the
y component of the normal was 0.3, for the image intensity was 0.2 and for the image entropy
was 0.15. The size of the random sample used is 50 points.

Since the units of rotation and translation are very different, two separate learning rates are
necessary. For an object with a 100 millimeter radius, a rotation of 0.01 radians about its center
can translate a model point up to a 1 millimeter. On the other hand, a translation of 0.01 can
at most translate a model point 0.01 millimeters. As a result, a small step in the direction of the
derivative will move some model points up to 100 times further by rotation than translation. If
there is only a single learning rate a compromise must be made between the rapid changes that
arise from the rotation and the slow changes that arise from translation. Since the models used
have a radius that is on the order of 100 millimeters, we have chosen rotation learning rates
that are 100 times smaller than translation rates. In our experiments alignment proceeds in
two stages. For the first 2000 iterations the rotation learning rate is 0.0005 and the translation
learning rate is 0.05. The learning rates are then reduced to 0.0001 and 0.01 respectively for an
additional 2000 iterations. Running time is about 30 seconds on a Sparc 10.

A number of randomized experiments were performed to determine the reliability, accuracy
and repeatability of alignment. This data is reported in Table 1. An initial alignment to
an image was performed to establish a base pose. From this base pose, a random uniformly
distributed offset is added to each translational axis (labeled AT') and then the model is rotated
about a randomly selected axis by a random uniformly selected angle (A#). Table 1 includes four
experiments each including 50 random initial poses. The distribution of the final and initial poses
can be compared by examining the variance of the location of the centroid, computed separately
in X, Y and Z. In addition, the average angular rotation from the true pose is reported (labeled
[ A4]). Finally, the number of poses that successfully converged near the correct solution is
reported. The final variance statistics are only computed over the “good” poses.

The third and fourth images in Figure 2 show the initial and final alignment from an ex-
periment that includes an artificial occlusion that covers the chin area. The pose found is very
close to the correct one despite the occlusion. In a number of experiments, we have found that
alignment to occluded images can require more time for convergence. Qur system works in the
presence of occlusion because the measure of mutual information used is “robust” to outliers
and noise (see [7] for further discussion). .

These experiments demonstrate that maximization of mutual information can align corﬁplex
3D objects to real images efficiently and reliably. Mutual information does have local maxima
from which stochastic gradient ascent cannot escape. A complete object recognition system
would require some mechanism for discarding local maxima.

4.2.2 *Head Tracking Experiment

This section summarizes recent results obtained using the methodology described above to track
a moving human head in a video sequence. The results are shown in Figure 3. The images on



Figure 3: Video Head Tracking Experiment
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the left of each square have been digitized from video tape at 3 frames per second. A 3D model
of the subject’s head, along with surface normals, was derived from a Cyberware scan of the
subject. It is rendered on the right to illustrate the poses determined by the alignment method.
(Recall that alignment proceeds using video brightness and model surface normals.)

An initial alignment of the model to the first frame of the sequence was obtained using a
manually-generated starting pose (this frame is not shown). In subsequent frames, the previous
final pose was used as the initial pose for the next alignment. Each pose refinement took about
10 seconds on a Sparc 10.

4.3 Image-Based Alignment

Figure 5: Car Image, Final Pose of Car Model, and Initial Pose

In our final experiment we align video images taken of an object under different lighting con-
ditions. We were motivated by a commonly occurring situation: it is often difficult to obtain
a good 3D model of an object. Here we construct a model from a pair of images that can be
aligned to new target images taken under different lighting conditions. An example is shown in
Figures 4 and 5.

It is well known from photometric stereo research [9] that three images under different illumi-
nation are sufficient to build a three dimensional model of a surface. The three images and knowl-
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edge of the surface properties of the object are enough to constrain the missing parameters of the
model: the normal and the albedo. Furthermore, for any surface patch the normal, the albedo
and the lighting are sufficient to predict the intensity of a novel image. As before we can define
a function that relates the model and a target image v(T'(z;)) = F(G(u1(Z:), ua(z;), uz(z:)), P).
G() is a function from the three model images to the normal and the albedo, and F() pre-
dicts image intensities. Luckily, we need not actually know G() or F(). If they exist and are
informative there will be high mutual information between any novel image and the model.

If we knew, a priori, that the entire model had the same albedo we would need only two
images to determine the remaining unknown parameter: the surface normal. Consequently,
a model that comprised two images would have high mutual information with novel images.
Interestingly, this can be true even when the model contains several discrete types of surface.
If we could separate the points that came from each type of surface, each group would have
a separate unknown function that predicted the target image from the model. Conditioned
on being from a particular group, the model would have high information about the the target
image. If there were a small number of groups there would be only a small number of values that
the target image could take on at any point, one for each group. The resulting joint distribution
retains high mutual information even when the group of the point is unknown.

To demonstrate this phenomena we built a model using the two images in Figure 4. Figure 5
shows the target image, the final pose obtained after alignment, and the initial pose of the
model.

Technically this experiment is very similar to the MRI experiments, the main difference being
that u had two dimensional values. We used a o of 0.1 for all distances. The sample size was
twenty. The learning rate was 0.002 for 1000 iterations. Experiments demonstrated a capture
range of about 40% of the length and width of the car, and rotations of up to 35 degrees.

5 Discussion and Related Work

We have presented a metric for comparing objects and images that uses shading information,
yet is explicitly insensitive to changes in illumination. This metric is unique in that it compares
3D object models directly to raw images. No pre-processing or edge detection is required. The
metric has been rigorously derived from information theory.

In a typical vision application it is an intensity-based, rather than feature based method.
While intensity based, it is more robust than traditional correlation - since it is insensitive to
negating the image data, as well as a variety of non-linear transformations (e.g., Section 4.1),
which would defeat conventional intensity-based correlation.

The sensitivity of intensity correlation may be corrected, to some extent, by performing
correlations on the magnitude of the intensity gradient. This, as well as edge-based matching
techniques, can perform well on objects having discontinuous surface properties, or useful sil-
houettes. These approaches work because the image counterparts of these discontinuities are
reasonably stable with respect to illumination, however they typically make two very strong
assumptions: the edges that arise are stable under changes in lighting, and the models are well
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described as a collection of edges.

There are many schemes that represent models and images by collections of edges and define
a distance metric between them, Huttenlocher’s use of the Hausdorff distance [10] is prominent
among them. Some methods use a metric that is proportional to the number of edges that
coincide (see the excellent survey articles: [11][12]). A smooth, optimizable version of such a
metric can be defined by introducing a penalty both for unmatched edges and for the distance
between those that are matched [13] [14]. This metric can then be used both for image/model
comparison and for pose refinement. Additional technical details on the relationship between
mutual information and other measures of alignment may be found in [7].

Alignment by extremizing properties of the joint signal has been used by Hill and Hawkes [15]
to align MRI, CT, and other medical image modalities. They use third order moments of the joint
histogram to characterize the clustering of the joint data. We believe that mutual information
is perhaps a more direct measure of the salient property of the joint data at alignment, and
demonstrate an efficient means of estimating and extremizing it. Recently, Collignon et al.
[16] described the use of joint entropy as a criterion for registration of CT and MRI data.
They demonstrated a good minimum by probing the criterion, but no search techniques were
described.

Image-based approaches to modeling have been previously explored by several authors. Ob-
jects need not have edges to be well represented in this way, but care must be taken to deal with
changes in lighting and pose. Turk and Pentland have used a large collection of face images to
train a system to construct representations that are invariant to some changes in lighting and
pose [17]. These representations are a projection onto the largest eigenvectors of the distribution
of images within the collection. Their system addresses the problem of recognition rather than
alignment, and as a result much of the emphasis and many of the results are different. For in-
stance, it is not clear how much variation in pose can be handled by their system. We do not see
a straightforward extension of this or similar eigenspace work to the problem of pose refinement.
In other related work, Shashua has shown that all of the images, under different lighting, of a
Lambertian surface are a linear combination of any three of the images [18]. A procedure for
image alignment could be derived from this theory. In contrast, our image alignment method
does not assume that the object has a Lambertian surface.

Entropy is playing an ever increasing role within the field of neural networks. We know
of no work on the alignment of models and images, but there has been work using entropy
and information in vision problems. None of these technique uses a non-parametric scheme for
density /entropy estimation as we do. In most cases the distributions are assumed to be either
binomial or Gaussian. Entropy and mutual information plays a role in the work of Linsker [19],
Becker and Hinton [20] and Bell and Sejnowski [?].
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6 A Framework for Multiple Instance Learning — by Oded
Maron

One of the drawbacks of applying the supervised learning model is that it is not always possible
for a teacher to provide labeled examples for training. Multiple-instance learning provides a new
way of modeling the teacher’s weakness. Instead of receiving a set of instances which are labeled
positive or negative, the learner receives a set of bags that are labeled positive or negative. Each
bag contains many instances. A bag is labeled negative if all the instances in it are negative. On
the other hand, a bag is labeled positive if there is at least one instance in it which is positive.
From a collection of labeled bags, the learner tries to induce a concept that will label individual
instances correctly. This problem is harder than even noisy supervised learning since the ratio
of negative to positive instances in a positively-labeled bag (the noise ratio) can be arbitrarily
high.

The first application of multiple-instance learning was to drug activity prediction. In the
activity prediction application, one objective is to predict whether a candidate drug molecule
will bind strongly to a target protein known to be involved in some disease state. Typically,
one has examples of molecules that bind well to the target protein and also of molecules that
do not bind well. Much as in a lock and key, shape is the most important factor in determining
whether a drug molecule and the target protein will bind. However, drug molecules are flexible,
so they can adopt a wide range of shapes. A positive example does not convey what shape the
molecule took in order to bind — only that one of the shapes that the molecule can take was the
right one. However, a negative example means that none of the shapes that the molecule can
achieve was the right key.

The multiple-instance learning model was only recently formalized by [21]. They assume
a hypothesis class of axis-parallel rectangles, and develop algorithms for dealing with the drug
activity prediction problem described above. This work was followed by [22], where a high-
degree polynomial PAC bound was given for the number of examples needed to learn in the
multiple-instance learning model. [23] gives a more efficient algorithm, but makes very restrictive
assumptions on the way the data is generated.

In this paper, we describe a framework called Diverse Density for solving multiple-instance
problems. Diverse Density is a measure of how well a hypothesis performs with multiple-instance
training examples. Maximizing Diverse Density, either within a feature space or across different
feature subsets, is the goal of our algorithm. We show results of applying this algorithm to a
difficult synthetic training set as well as the “musk” data set from [21]. We then use Diverse
Density in two novel applications: one is to learn a simple description of a person from a series of
images that are labeled positive if the person is somewhere in the image and negative otherwise.
The other is to deal with a high amount of noise in a stock selection problem.
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Figure 6: A motivating example for Diverse Density

7 Diverse Density

We motivate the idea of Diverse Density through a molecular example. Suppose that the shape
of a candidate molecule can be adequately described by a feature vector . One instance of
the molecule is therefore represented as a point in n-dimensional feature space. As the molecule
changes its shape (through both rigid and non-rigid transformations), it will trace out a manifold
through this n-dimensional space!. Figure 6(a) shows the paths of four molecules through a 2-
dimensional feature space.

If a candidate molecule is labeled positive, we know that in at least one place along the
manifold, it took on the right shape for it to fit into the target protein. If the molecule is labeled
negative, we know that none of the conformations along its manifold will allow binding with the
target protein. What do the positive and negative manifolds tell us about the location of the
correct shape in feature space? The answer: it is where all positive feature-manifolds intersect
without intersecting any negative feature-manifolds. For example, in Figure 6(a) it is point A.

Unfortunately, a multiple-instance bag does not give us complete distribution information,
but only some arbitrary sample from that distribution. Therefore, Figure 6(a) becomes Figure
6(b). The problem of trying to find an intersection changes to a problem of trying to find an
area where there is both high density of positive points and low density of negative points. .The
problem with using positive density is illustrated in in Figure 6(b), Section B. We are not just
looking for high density, but high “Diverse Density”. We define Diverse Density at a point to
be a measure of how many different positive bags have instances near that point, and how far

the negative instances are from that point.

In practice, one needs to restrict consideration to shapes of the molecule that have sufficiently low potential

energy. But, we ignore this restriction in this simple illustration.
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Figure 7: Negative and positive bags drawn from the same distribution, but labeled according
to their intersection with the middle square. Negative instances are dots, positive are numbers.
The square contains at least one instance from every positive bag and no negatives,

7.1 Algorithms for multiple-instance learning

In this section, we derive a probabilistic measure of Diverse Density, and test it on a difficult
artificial data set. We denote positive bags as BY, and the 7t point in that bag as Bj]' Likewise,
B/, represents a negative point. Assuming that the true concept is a single point ¢, we can find it
by maximizing Pr(z =t | B ,---, B}, By ,--+, B,) over all points z in feature space. If we use
an uninformative prior over the concept location, this is equivalent to maximizing the likelihood
Pr(B;},---,B},By,---, B, | z = t). By making the additional assumption that the bags are
conditionally independent given the target concept ¢, the best hypothesis is

a.rgmfxn Px(Bf |z = t)HPr(B,-_ |z=1) (6)

This is a general definition of Diverse Density, but we need to define the terms in the
products to instantiate it. One possible instantiation is a noisy-or model: the probability that
not all points missed the target is Pr(Bf |z =t) = 1 - [[;(1 - Pr(B;'J'- = z)), and likewise
Pr(B; | z =t) = [[;(1-Pr(B}; = z)). If the instances within a bag are not independent, then we
can use the instance from each bag which is closest to the target: Pr(Bf |z =) = Pr(BfJT =),
where j = argming || B} — z |. Finally, we assume that the data is noisy so we model
Pr(Bj]'. = z) with a Gaussian-like distribution of exp(— || B;’; — 2 ||). Diverse Density at an
intersection of n bags is exponentially higher than it is at an intersection of n — 1 bags, yet all it
takes is one well placed negative instance to drive the Diverse Density down. Note that we can
perform feature weighting by maximizing Equation 1 with respect to the set of weights used in

computing the distance (|} - ||), as in [24].
To test the algorithm, we created the following artificial data set: n positive bags and m
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(a) Surface using regular density (b) Surface using Diverse Density

Figure 8: Density surfaces over the example data of Figure 3

negative bags, each with k instances. Each instance was chosen randomly from a [0,100] x
[0,100] € R? domain, and the concept was a 5 X 5 square in the middle of the domain. A bag
was labeled positive if at least one of its instances fell within the square, and negative if none
did. An example (with n = m = 5, and k = 200) is shown in Figure 7. The square in the middle
contains at least one instance from every positive bag and no negative instances. This is a
difficult data set because both positive and negative bags are drawn from the same distribution.
They only differ in a small area of the domain.

Using regular density (adding up the contribution of every positive bag and subtracting
negative bags; this is roughly what a supervised learning algorithm such as nearest neighbor
performs), we can plot the density surface across the domain. Figure 8(a) shows this surface
for the data set in Figure 7, and it is clear that finding the peak (a candidate hypothesis)
is difficult because of the abundance of local maxima and because many points have similar
maxima. However, when we plot the Diverse Density surface (using the noisy-or model) in
Figure 8(b), it is easy to pick out the global maximum which is within the desired concept.

The other major peaks in Figure 8(b) are the result of a chance concentration of instances
from different bags in another part of the space. With a bit more bad luck, one of those peaks
could have eclipsed the one in the middle. However, the chance of this decreases as the number
of bags increases. This can be seen in Figure 9, where the probability of the top Diverse Density
landing within the true concept increases as either the number of positive or negative bags
increases. The number of points per bag was held at 200 and 100 randomly generated data sets
were used to estimate the probability of a correct run at every point.

There are two critical factors involved in making a Diverse Density algorithm computationally
efficient. One is to insure that the time to compute the Diverse Density at a point does not grow
as fast as the total number of training instances. The second is to insure that the time to find
the maximum Diverse Density does not grow exponentially with the number of features. One of
the reasons for the use of Gaussians as weighting functions is that they drop off fairly quickly.
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Figure 9: Success of Diverse Density vs. number of training bags

To compute the contribution of a bag at point p, we only need to look at instances that are close
to p — all the other ones contribute nearly zero. By partitioning the space (much like [25]), we
can achieve nearly constant time computation of Diverse Density at a point.

Finding the maximum Diverse Density is a more difficult issue. In general, we are searching
an arbitrary density landscape and the number of local maxima and size of the search space
could prohibit any efficient exploration. In this paper, we use gradient ascent with multiple
starting points. This has worked succesfully in every test case because we know what starting
points to use. The maximum Diverse Density point is made of contributions from some set of
positive points. If we start an ascent from every positive point, one of them is likely to be closest
to the maximum, contribute the most to it and have a climb directly to it.

8 Applications of Diverse Density

By way of benchmarking, we tested the Diverse Density approach on the “musk” data sets
from [21], which were also used in [23]. We also have begun investigating two new applications
of multiple-instance learning. We describe preliminary results on all of these below. The musk
data sets contain feature vectors describing the surfaces of a variety of low-energy shapes from
approximately 100 molecules. Each feature vector has 166 dimensions. Approximately half of
these molecules are known to smell “musky,” the remainder are very similar molecules that do
not smell musky. There are two musk data sets; the Musk-1 data set is smaller, both in having
fewer molecules and many fewer instances per molecule. Many (72) of the molecules are shared
between the two data sets, but the second set includes more instances for the shared molecules.

We approached the problem as follows: for each run, we held out a randomly selected 1 /10
of the data set as a test set. We computed the maximum Diverse Density on the training set by
multiple gradient ascents, starting at each positive instance. This produces a maximum feature
point as well as the best feature weights corresponding to that point. We note that typically
less than half of the 166 features receive non-zero weighting. We then computed a distance
threshold that optimized classification performance under leave-one-out cross validation within
the training set. We used the feature weights and distance threshold to classify the examples
of the test set; an example was deemed positive if the weighted distance from the maximum

density point to any of its instances was below the threshold.

18




Figure 10: A training set of images with one person in common

The table below lists the average accuracy of twenty runs, compared with the performance
of the two principal algorithms reported in [21] (iterated-discrim APR and GFS elim-kde
APR), as well as the MULTINST algorithm from [23]. We note that the performances reported
for iterated-discrim APR involves choosing parameters to maximize test set performance and
so probably represents an upper bound for accuracy on this data set. The Diverse Density
results, which required no tuning, are comparable or better than those of GFS elim-kde APR
and MULTINST.

Musk Data Set 1 Musk Data Set 2
algorithm accuracy algorithm accuracy
iterated-discrim APR 92.4 iterated-discrim APR 89.2
GF'S elim-kde APR 91.3 MULTINST 84.0
Diverse Density 88.9 Diverse Density 82.5
MULTINST 76.7 GFS elim-kde APR 80.4

We also investigated two new applications of multiple-instance learning. The first of these is
to learn a simple description of a person from a series of images that are labeled positive if they
contain the person and negative otherwise. For a positively labeled image we only know that
the person is somewhere in it, but we do not know where. We sample 54 subimages of varying
centers and sizes and declare them to be instances in one positive bag since one of them contains
the person. This is repeated for every positive and negative image.

We use a very simple representation for the instances. Each subimage is divided into three
parts which roughly correspond to where the head, torso and legs of the person would be. The
three dominant colors (one for each subsection) are used to represent the image. Figure 10 shows
a training set where every bag included two people, yet the algorithm learned a description of
the person who appears in all the images.

Another new application uses Diverse Density in the stock selection problem. Every month,
there are stocks that perform well for fundamental reasons and stocks that perform well because
of flukes; there are many more of the latter, but we are interested in the former For every month,
we take the 20 stocks with the highest return and put them in a positive bag, hoping that at
least one of them did well for fundamental reasons. Negative bags are created from the bottom 5
stocks in every month. A stock is described by two features: a ranking of its price to book ratio
and a ranking of its price to fair-value ratio. Figure 11(a) shows the resulting Diverse Density
landscape. The training data is taken from the 600 top stocks over the last 18 years. When
tested on stocks that had wild fluctuation in their returns (more than +20% change in a month),
the stocks with high Diverse Density had an average monthly return of 21.88. Those with high
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Figure 11: Applying Diverse Density to stock selection

price to book and price to fair-value had an average return of 5.27. The baseline average return
over all wildly fluctuating stocks is 7.04. In Figure 11(b), the return of every wildly fluctuating
stock is plotted against the Diverse Density of that stock. The higher the Diverse Density, the
more likely the stock is to have positive return rather than negative return. ‘
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